skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Chen, Xueqin"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Fine-grained urban flow inference (FUFI), which involves inferring fine-grained flow maps from their coarse-grained counterparts, is of tremendous interest in the realm of sustainable urban traffic services. To address the FUFI, existing solutions mainly concentrate on investigating spatial dependencies, introducing external factors, reducing excessive memory costs, etc., -- while rarely considering the catastrophic forgetting (CF) problem. Motivated by recent operator learning, we present an Urban Neural Operator solution with Incremental learning (UNOI), primarily seeking to learn grained-invariant solutions for FUFI in addition to addressing CF. Specifically, we devise an urban neural operator (UNO) in UNOI that learns mappings between approximation spaces by treating the different-grained flows as continuous functions, allowing a more flexible capture of spatial correlations. Furthermore, the phenomenon of CF behind time-related flows could hinder the capture of flow dynamics. Thus, UNOI mitigates CF concerns as well as privacy issues by placing UNO blocks in two incremental settings, i.e., flow-related and task-related. Experimental results on large-scale real-world datasets demonstrate the superiority of our proposed solution against the baselines. 
    more » « less
  2. Effectively predicting the size of an information cascade is critical for many applications spanning from identifying viral marketing and fake news to precise recommendation and online advertising. Traditional approaches either heavily depend on underlying diffusion models and are not optimized for popularity prediction, or use complicated hand-crafted features that cannot be easily generalized to different types of cascades. Recent generative approaches allow for understanding the spreading mechanisms, but with unsatisfactory prediction accuracy. To capture both the underlying structures governing the spread of information and inherent dependencies between re-tweeting behaviors of users, we propose a semi-supervised method, called Recurrent Cascades Convolutional Networks (CasCN), which explicitly models and predicts cascades through learning the latent representation of both structural and temporal information, without involving any other features. In contrast to the existing single, undirected and stationary Graph Convolutional Networks (GCNs), CasCN is a novel multi-directional/dynamic GCN. Our experiments conducted on real-world datasets show that CasCN significantly improves the prediction accuracy and reduces the computational cost compared to state-of-the-art approaches. 
    more » « less
  3. Effectively modeling and predicting the information cascades is at the core of understanding the information diffusion, which is essential for many related downstream applications, such as fake news detection and viral marketing identification. Conventional methods for cascade prediction heavily depend on the hypothesis of diffusion models and hand-crafted features. Owing to the significant recent successes of deep learning in multiple domains, attempts have been made to predict cascades by developing neural networks based approaches. However, the existing models are not capable of capturing both the underlying structure of a cascade graph and the node sequence in the diffusion process which, in turn, results in unsatisfactory prediction performance. In this paper, we propose a deep multi-task learning framework with a novel design of shared-representation layer to aid in explicitly understanding and predicting the cascades. As it turns out, the learned latent representation from the shared-representation layer can encode the structure and the node sequence of the cascade very well. Our experiments conducted on real-world datasets demonstrate that our method can significantly improve the prediction accuracy and reduce the computational cost compared to state-of-the-art baselines. 
    more » « less